volume II: Synopsis
section V: Applied Divinity
page 34: Evolution
Christian cosmology holds that God created the Universe from nothing as an entity other than itself. This is a bit hard to understand, given that God is the fullness of being, ie that there is no room for anything to exist other than God. Here we see creation as the emergence of fixed points in the divine dynamics, starting from the initial singularity, which seems identical to the absolutely simple divinity proposed by Aquinas and others. Consequently, we are inside, rather than outside God, and all our experience is experience of God. Genesis creation narrative - Wikipedia, Aquinas, Summa, I, 3, 7: Is God altogether simple?
Although we call this creation, the Christian belief in the omniscience of God, which holds that God knows all things, past, present and future, suggests that the Universe pre-existed in the mind of God, so that we might be more accurate to say that the Universe was created out of God, rather than out of nothing. Aquinas, Summa I, 15, 1: Are there ideas?
The traditional creation story also suggests that God could have made the Universe differently. In fact, some believed that the first version of the Universe was error free, evil becoming manifest only when the first people disobeyed God. Modern physics gives the impression that the Universe was created with very precise initial conditions which have constrained its evolution to give the Universe we now experience. Fall of Man - Wikipedia, Barrow & Tipler: The Anthropic Cosmological Principle
Our hypothesis, that the Universe is divine leads us to modify some of these ideas. First, there can be little doubt, given the observational and theoretical evidence, that the Universe started as a very simple system and 'complexified' to its present state. This complexification serves as our definitions of creation. Pierre Teilhard de Chardin: The Phenomenon of Man
If it is true that the Universe started as an undifferentiated point, and there is no controlling power outside it, there can be no initial conditions. For initial conditions are information, information is represented physically, and there are no distinct points in the initial singularity to represent this information. Since it is unconstrained, this Universe could not be 'made' differently. Like the traditional Western God, the Universe simply exists and that is that. We cannot say why.
Three of the most secure 'laws' of modern physics are the conservation of action and the first and second laws of thermodynamics. The first law tells us that energy, that is the time rate of action, is conserved. The second tells us that on a sufficiently large scale, entropy never decreases. Entropy is a count of possibilities, and so a measure of uncertainty. Information is that which brings certainty. Shannon supposed (and we shall follow) that the information carried by a definite point in a space of possibilities is equal to the entropy of the space. Alexandr Khinchin: Mathematical Foundations of Information Theory
The question: How does the Universe create itself? thus becomes the question how does entropy increase? This in turn becomes how does the number of fixed points in the divine dynamics increase? The answer seems to lie in the making and breaking of symmetries, that is, in evolution by selection, an idea introduced to the biological word by Charles Darwin. Darwin saw how deliberate selection by farmers and breeders had produced a wide variety of breeds of pigeons, fowls, sheep, cattle, horses and other domesticated animals each adapted to particular purposes like racing, hunting, food production or simply to a fancy. He proposed that a similar task was carried out by "natural selection". Charles Darwin: The Variation of Animals and Plants Under Domestication
Evolution is made possible by variation. Very rarely do living things breed completely true. Even single celled creatures that multiply by dividing sometimes make errors copying their genetic code so that the two daughter cells are slightly different. Sexual reproduction, which mixes the genetic codes of two individuals enables more variation than that caused by simple error. Breeders breed from the individuals which most closely represent the phenotype they are seeking. The choice of mates in natural selection is determined more by chance and environmental conditions, but the general effect is to favour those individuals best able to survive, grow strong, mate and successfully rear their young. Evolution by natural selection is now established in biology as the source of the enormous variety in the tree of life from viruses to large and complex organisms like ourselves. Darwin: The Origin of Species by Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, Darwin: The Descent of Man, and Selection in Relation to Sex
Reproduction is a form of communication. The telephone works by reproducing the words I say into my phone in your phone. All communication is copying. In some cases the original may be destroyed, in others, like the email system, both original and copy may be preserved. The theory of communication is thus closely connected to evolution. Shannon showed that we can use computation to establish error free channels of communication but that there is a limit on the rate of communication defined by the nature of the channel. We guess that stable structures in the Universe represent error free networks of communication. Claude Shannon - Wikipedia
Shannon's theory also shows that from the point of view of avoiding error, there is a selective advantage in long complex messages. Each message is a point in a message space. As the messages are made longer the dimension of that space grows in direct proportion to the size of the message, but the volume of the space grows exponentially. Using longer messages means that fewer are needed to transmit the same volume of data, and the increasing volume of the message space means that they can be placed further apart, leading to a lower probability of confusion and error.
The theory of evolution first emerged in biology, but the principles of variation and selection have much wider application. The theory of communication shows us how to correct errors in communication, but it also shows that there are limits to error correction.
The cybernetic principe of requisite variety further explains the ubiquity of variation. This principle tells us that in general a simple system cannot control a system more complex than itself. The second law of thermodynamics tells us that on the whole entropy is increasing, which means that the future is generally more complex than the past. There are therefore many cases where the past cannot control the future and randomness and variation are the result. Variation, otherwise known as error, will often occur. Also error prevention and correction depend upon computation for encoding and decoding, and computation takes time. In real situations a tradeoff arises between error and time. W. Ross Ashby: An Introduction to Cybernetics, Cybernetics - Wikipedia
When we look at the initial singularity we see that, because it is absolutely simple, there is no control at all. On the other hand, there is a very high level of activity, which must of necessity be random, but which may nevertheless hit upon the occasional stable self reproducing system which will naturally select itself. High energy physics experiments show that wherever there is sufficient energy a large variety of fundamental particles are created. These events are in effect microscopic representations of the big bang. Although we have learnt a lot of rules about what can and cannot happen in such events, we still do not understand how these rules came to be in a universe that was not created by an intelligent being. Like the tree of life, we must imagine that the tree of fundamental particles has evolved in some way
Biological reproductive systems have evolved over long periods of time to be relatively stable and have a relatively high proportion of success. A species can maintain itself as long as it can maintain its population by a sufficient rate of reproduction. Clearly the fundamental particles that we have discovered are analogous to species and they inhabit the fundamental ecosystem of the world. The history of their discovery has shown that they form a complete set. When experimenters have been faced by a new and strange behaviour, they have eventually found a particle to explain it, culminating in the Higgs boson. Each particle appears to behave rather like the bearer of a snippet of code so that all taken together they form the hardware of the universe. Martinus Veltman: Facts and Mysteries in Elementary Particle Physics
The best clues to the formation of these particles may be mathematical fixed point theorems. Fixed point theorems tell us that when a closed system is mapped to itself by a function f, there is at least one fixed point x such that f(x) = x, a point in the dynamics that does not move. Since there is nothing outside the Universe we must understand the dynamics of the Universe as the Universe mapping onto itself, so that it looks as though there must be fixed points. If different mappings yield different fixed points, we might see each of the fundamental particles as the fixed point of a possible mapping. Brouwer fixed point theorem - Wikipedia
Turing showed that there are only a limited number of deterministic mappings of the Universe onto itself. These mappings are the computable functions. Maybe the fundamental particles are the minimum set of computable functions necessary to create a universe. Universal Turing Machine - Wikipedia
Pure dynamics, mapping onto itself because it has nowhere else to go, creates fixed points. These fixed points, however, cannot by themselves determine the future, so each becomes in its turn a dynamic symmetry itself subject to a fixed point theorem. An example of this process is the mathematics community itself, a seething maelstrom of ideas that regularly produce a theory or a theorem which is recorded in the literature. This work may itself become a new centre of development. This bootstrapping process, which guarantees that mathematical discovery will never end, may be analogous to the way the universe creates itself. Language of Mathematics - Wikipedia
As we improve our communication with one another we may increase cooperation at the expense of antagonism in the processing of human life. This may in turn increase productivity, allowing more time to be devoted to activities which are not specifically survival oriented increasing our spiritual depth. A virtuous circle.
We see the vicious opposite to this virtuous circle operating wherever attempts are made to suppress and control communication, a very common government practice. Here we see the evil associated with dictatorships in the world which seek to reduce the entropy and information of a whole population to that of a 'dear leader' or military oligarchy. Chun Han Wong: Chinese Mogul Faces Probe for Essay Critical of President Xi's Coronavirus Handling
(revised 7 April 2020)
Back to Synopsis toc
|
Copyright:
You may copy this material freely provided only that you quote fairly and provide a link (or reference) to your source.
Further readingBooks
Ashby, W Ross, An Introduction to Cybernetics, Methuen 1956, 1964 'This book is intended to provide [an introduction to cybernetics]. It starts from common-place and well understood concepts, and proceeds step by step to show how these concepts can be made exact, and how they can be developed until they lead into such subjects as feedback, stability, regulation, ultrastability, information, coding, noise and other cybernetic topics.'
Amazon
back |
Barrow, John D., and Frank J. Tipler, The Anthropic Cosmological Principle, Oxford University Press 1996 'This wide-ranging and detailed book explores the many ramifications of the Anthropic Cosmological Principle, covering the whole spectrum of human inquiry from Aristotle to Z bosons. Bringing a unique combination of skills and knowledge to the subject, John D. Barrow and Frank J. Tipler-two of the world's leading cosmologists-cover the definition and nature of life, the search for extraterrestrial intelligence, and the interpretation of the quantum theory in relation to the existence of observers.'
Amazon
back |
Darwin (1859), Charles, The Origin of Species by Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, Cambridge University Press 1859, 2009 'It's hard to talk about The Origin of Species without making statements that seem overwrought and fulsome. But it's true: this is indeed one of the most important and influential books ever written, and it is one of the very few groundbreaking works of science that is truly readable. . . .
Darwin's friend and "bulldog" T.H. Huxley said upon reading the Origin, "How extremely stupid of me not to have thought of that." Alfred Russel Wallace had thought of the same theory of evolution Darwin did, but it was Darwin who gathered the mass of supporting evidence—on domestic animals and plants, on variability, on sexual selection, on dispersal—that swept most scientists before it. It's hardly necessary to mention that the book is still controversial: Darwin's remark in his conclusion that "Light will be thrown on the origin of man and his history" is surely the pinnacle of British understatement Mary Ellen Curtin
Amazon
back |
Darwin (1874), Charles, The Descent of Man, and Selection in Relation to Sex, Penguin Classics 1874 'No book made a greater impact on the intellectual world of its first Victorian readers nor has had such an enduring influence on our thinking on science, literature, theology and philosophy. In The Descent of Man, Darwin addresses the crucial question of the origins, evolution and racial divergence of mankind, that he had deliberately left out of On the Origin of Species. And the evidence he presents forces us to question what it is that makes us uniquely human.'
Amazon
back |
Darwin (1875), Charles, and Harriet Ritvo (Introduction), The Variation of Animals and Plants Under Domestication (Foundations of Natural History), Johns Hopkins University Press 1875, 1998 ' "The Variation, with its thousands of hard-won observations of the facts of variation in domesticated species, is a frustrating, but worthwhile read, for it reveals the Darwin we rarely see -- the embattled Darwin, struggling to keep his project on the road. Sometimes he seems on the verge of being overwhelmed by the problems he is dealing with, but then a curious fact of natural history will engage him (the webbing between water gun-dogs' toes, the absurdly short beak of the pouter pigeon) and his determination to make sense of it rekindles. As he disarmingly declares, 'the whole subject of inheritance is wonderful.'.
Amazon
back |
Khinchin, Aleksandr Yakovlevich, Mathematical Foundations of Information Theory (translated by P A Silvermann and M D Friedman), Dover 1957 Jacket: 'The first comprehensive introduction to information theory, this book places the work begun by Shannon and continued by McMillan, Feinstein and Khinchin on a rigorous mathematical basis. For the first time, mathematicians, statisticians, physicists, cyberneticists and communications engineers are offered a lucid, comprehensive introduction to this rapidly growing field.'
Amazon
back |
Teilhard de Chardin, Pierre, The Phenomenon of Man, Collins 1965 Sir Julian Huxley, Introduction: 'We, mankind, contain the possibilities of the earth's immense future, and can realise more and more of them on condition that we increase our knowledge and our love. That, it seems to me, is the distillation of the Phenomenon of Man.'
Amazon
back |
Veltman, Martinus, Facts and Mysteries in Elementary Particle Physics, World Scientific 2003 'Introduction: The twentieth century has seen an enormous progress in physics. The fundamental physics of the first half of the century was dominated by the theory of relativity, Einstein's theory of gravitation and the theory of quantum mechanics. The second half of the century saw the rise of elementary particle physics. . . . Through this development there has been a subtle change in point of view. In Einstein's theory space and time play an overwhelming dominant role. . . . The view that we would like to defend can perhaps best be explaned by an analogy. To us, space-time and the laws of quantum mechanics are like the decor, the setting of a play. The elementary articles are the actors, and physics is what they do. . . . Thus in this book the elementary particles are the central objects.'
Amazon
back |
Links
Aquinas, Summa I, 15, 1, Are there are ideas, 'I answer that, It is necessary to suppose ideas in the divine mind. For the Greek word Idea is in Latin "forma." ' back |
Aquinas, Summa, I, 3, 7, Is God altogether simple?, 'I answer that, The absolute simplicity of God may be shown in many ways.
First, from the previous articles of this question. For there is neither composition of quantitative parts in God, since He is not a body; nor composition of matter and form; nor does His nature differ from His "suppositum"; nor His essence from His existence; neither is there in Him composition of genus and difference, nor of subject and accident. Therefore, it is clear that God is nowise composite, but is altogether simple. . . . ' back |
Brouwer fixed point theorem - Wikipedia, Brouwer fixed point theorem - Wikipedia, the free encyclopedia, 'Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Brouwer. It states that for any continuous function f with certain properties there is a point x0 such that f(x0) = x0. The simplest form of Brouwer's theorem is for continuous functions f from a disk D to itself. A more general form is for continuous functions from a convex compact subset K of Euclidean space to itself. back |
Cantor's theorem - Wikipedia, Cantor's theorem - Wikipedia, the free encyclopedia, ' In elementary set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A (the power set of A, denoted by P(A) ) has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with n members has a total of 2n subsets, so that if card (A) = n, then card (P(A)) = 2 n , and the theorem holds because 2n > n for all non-negative integers. ' back |
Centre for Theoretical Cosmology, The Origins of the Universe, 'The physical laws that govern the Universe prescribe how an initial state evolves with time. In classical physics, if the initial state of a system is specified exactly then the subsequent motion will be completely predictable. In quantum physics, specifying the initial state of a system allows one to calculate the probability that it will be found in any other state at a later time. Cosmology attempts to describe the behaviour of the entire Universe using these physical laws. In applying these laws to the Universe one immediately encounters a problem. What is the initial state that the laws should be applied to? In practice, cosmologists tend to work backwards by using the observed properties of the Universe now to understand what it was like at earlier times. This approach has proved very successful. However it has led cosmologists back to the question of the initial conditions.' back |
Chun Han Wong, Chinese Mogul Faces Probe for Essay Critical of President Xi's Coronavirus Handling, 'HONG KONG—China’s Communist Party said it is investigating alleged wrongdoing by an influential businessman who has been an outspoken critic of President Xi Jinping, signaling harsh punishment for the author of a scathing essay decrying the Chinese leader’s handling of the coronavirus pandemic.
The probe against Ren Zhiqiang, a real-estate mogul and a well-connected Communist Party member, comes as Beijing trumpets its success in containing the coronavirus and seeks to quell public anger around initial government missteps.
In a statement Tuesday, a Beijing district branch of the Communist Party’s disciplinary agency said Mr. Ren was being investigated by party and government inspectors for allegedly committing serious violations of party discipline and the law. back |
Claude Shannon - Wikipedia, Claude Shannon - Wikipedia, the free encyclopedia, 'Claude Elwood Shannon (April 30, 1916 – February 24, 2001), an American electrical engineer and mathematician, has been called "the father of information theory".
Shannon is famous for having founded information theory and both digital computer and digital circuit design theory when he was 21 years-old by way of a master's thesis published in 1937, wherein he articulated that electrical application of Boolean algebra could construct and resolve any logical, numerical relationship. It has been claimed that this was the most important master's thesis of all time.' back |
Cybernetics - Wikipedia, Cybernetics - Wikipedia, the free encyclopedia, 'Cybernetics is a transdisciplinary approach for exploring regulatory systems, their structures, constraints, and possibilities. Cybernetics is relevant to the study of systems, such as mechanical, physical, biological, cognitive, and social systems. Cybernetics is applicable when a system being analyzed is involved in a closed signaling loop; that is, where action by the system generates some change in its environment and that change is reflected in that system in some manner (feedback) that triggers a system change, originally referred to as a "circular causal" relationship.' back |
Decoherence-free subspaces - Wikipedia, Decoherence-free subspaces - Wikipedia, the free encyclopedia, 'A decoherence-free subspace (DFS) is a subspace of a system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. . . . Since quantum computers cannot be isolated from their environment (i.e. we cannot have a truly isolated quantum system in the real world) and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.' back |
Fall of Man - Wikipedia, Fall of Man - Wikipedia, the free encyclopedia, 'In Christian doctrine, the fall of man, or simply the fall, was the transition of the first humans from a state of innocent obedience to God to a state of guilty disobedience to God. Though not named in the Bible, the concept for the Fall comes from Genesis chapter 3. Adam and Eve live at first with God in a paradise, but the serpent tempts them into eating the fruit from the tree of knowledge of good and evil, which God forbade. After doing so they become ashamed of their nakedness and God consequently expelled them from paradise. Many Christian denominations believe that the fall corrupted the entire natural world, including human nature, causing people to be born into original sin, a state from which they cannot attain eternal life without the gracious intervention of God.' back |
Genesis creation narrative - Wikipedia, Genesis creation narrative - Wikipedia, the free encyclopedia, 'The Genesis creation narrative is the creation myth of both Judaism and Christianity. ' back |
Gödel's incompleteness theorems - Wikipedia, Gödel's incompleteness theorems - Wikipedia, 'Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing arithmetic. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible, giving a negative answer to Hilbert's second problem.
The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an "effective procedure" (i.e., any sort of algorithm) is capable of proving all truths about the relations of the natural numbers (arithmetic). For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem, an extension of the first, shows that such a system cannot demonstrate its own consistency.' back |
Heraclitus - Wikipedia, Heraclitus - Wikipedia, the free encyclopedia, 'Heraclitus of Ephesus (Greek: Ἡράκλειτος ὁ Ἐφέσιος—Hērákleitos ho Ephésios; c. 535 – c. 475 BCE) was a pre-Socratic Greek philosopher, a native of the Greek city Ephesus, Ionia, on the coast of Asia Minor. . . .
Heraclitus is famous for his insistence on ever-present change in the universe, as stated in his famous saying, "No man ever steps in the same river twice" (see panta rhei, below). He believed in the unity of opposites, stating that "the path up and down are one and the same", all existing entities being characterized by pairs of contrary properties. His cryptic utterance that "all entities come to be in accordance with this Logos" (literally, "word", "reason", or "account") has been the subject of numerous interpretations.'
' back |
Language of Mathematics - Wikipedia, Language of Mathematics - Wikipedia, the free encyclopedia, ' The language of mathematics is the system used by mathematicians to communicate mathematical ideas among themselves. This language consists of a substrate of some natural language (for example English) using technical terms and grammatical conventions that are peculiar to mathematical discourse (see Mathematical jargon), supplemented by a highly specialized symbolic notation for mathematical formulas.
Like natural languages in general, discourse using the language of mathematics can employ a scala of registers. Research articles in academic journals are sources for detailed theoretical discussions about ideas concerning mathematics and its implications for society. back |
Thomas Aquinas, Summa, I, 2, 3, Does God exist?, 'I answer that, The existence of God can be proved in five ways. The first and more manifest way is the argument from motion. . . . ' back |
Universal Turing Machine - Wikipedia, Universal Turing Machine - Wikipedia, the free encyclopedia, 'Alan Turing's universal computing machine (alternately universal machine, machine U, U) is the name given by him (1936-1937) to his model of an all-purpose "a-machine" (computing machine) that could process any arbitrary (but well-formed) sequence of instructions called quintuples. This model is considered by some (for example, Davis (2000)) to be the origin of the stored program computer -- used by John von Neumann (1946) for his "Electronic Computing Instrument" that now bears von Neumann's name: the von Neumann architecture.
This machine as a model of computation is now called the Universal Turing machine.' back |
|